Learning Partial Differential Equations from Noisy Data using Neural Networks
نویسندگان
چکیده
منابع مشابه
Neural Networks Learning Differential Data
In many of machine learning problems, it is essential to use not only the training data, but also a priori knowledge about how the world is constrained. In many cases, such knowledge is given in the forms of constraints on differential data or more specifically partial differential equations (PDEs). Neural networks with capabilities to learn differential data can take advantage of such knowledg...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Approximation Solution of Fractional Partial Differential Equations by Neural Networks
Neural networks with radial basis functions method are used to solve a class of initial boundary value of fractional partial differential equations with variable coefficients on a finite domain. It takes the case where a left-handed or right-handed fractional spatial derivative may be present in the partial differential equations. Convergence of this method will be discussed in the paper. A num...
متن کاملArtificial neural networks for solving ordinary and partial differential equations
We present a method to solve initial and boundary value problems using artificial neural networks. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial/boundary conditions and contains no adjustable parameters. The second part is constructed so as not to affect the initial/boundary conditions. This part involves a feedforward neura...
متن کاملDeep Relaxation: partial differential equations for optimizing deep neural networks
We establish connections between non-convex optimization methods for training deep neural networks (DNNs) and the theory of partial differential equations (PDEs). In particular, we focus on relaxation techniques initially developed in statistical physics, which we show to be solutions of a nonlinear Hamilton-Jacobi-Bellman equation. We employ the underlying stochastic control problem to analyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2020
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1655/1/012075